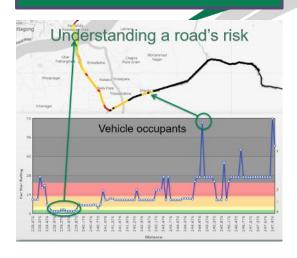


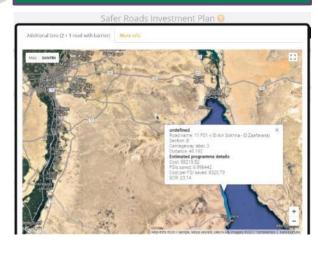
Presentation at TransAID - Operational Design Domain & Road Classification

Lina Konstantinopoulou

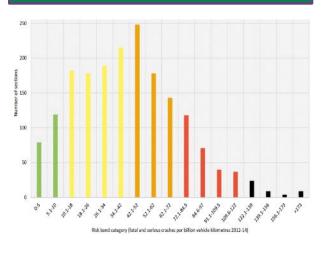
Secretary General, EuroRAP


EuroRAP's core protocols

RISK MAPS


- Colour coded map showing the where people are dying and where their crash risk is greatest
- Can inform priorities across all pillars of road safety action (management, infrastructure, vehicles, road users and post-crash care)

STAR RATING


- Based on road inspection data
- Simple and objective measure of the level of safety which is 'built-in' to the road
- Can be completed in the absence of crash data
- Five-star road segments are the safest while one-star are the least safe

INVESTMENT PLANS

- Considers 90 proven road improvement options
- A Safer Roads Investment Plan (SRIP) prioritises and costs improvement options can improve Star Ratings and save lives

PERFORMANCE TRACKING

- Regular risk mapping or star rating enables performance monitoring
- Enables celebration of success and action to be taken to address persistently high risk roads

iRAPs international protocols- UN

Target 3: By 2030, all new roads achieve technical standards for all road users that take into account road safety, or meet a three star rating or better.

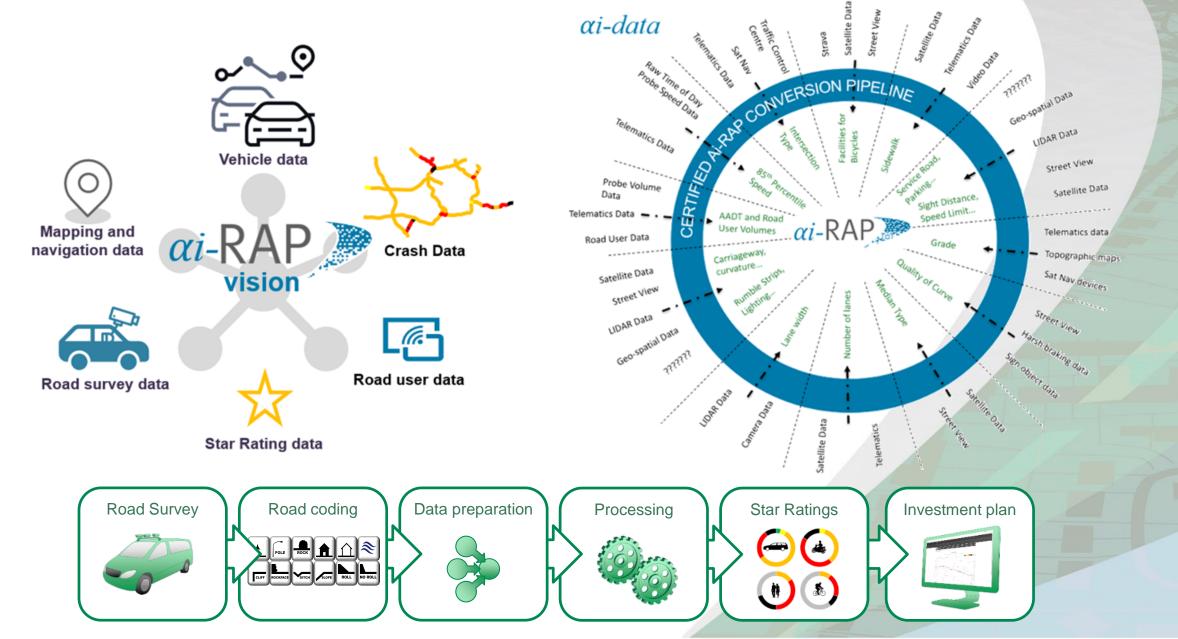
Target 4: By 2030, more than 75% of travel on existing roads is on roads that meet technical standards for all road users that take into account road safety.

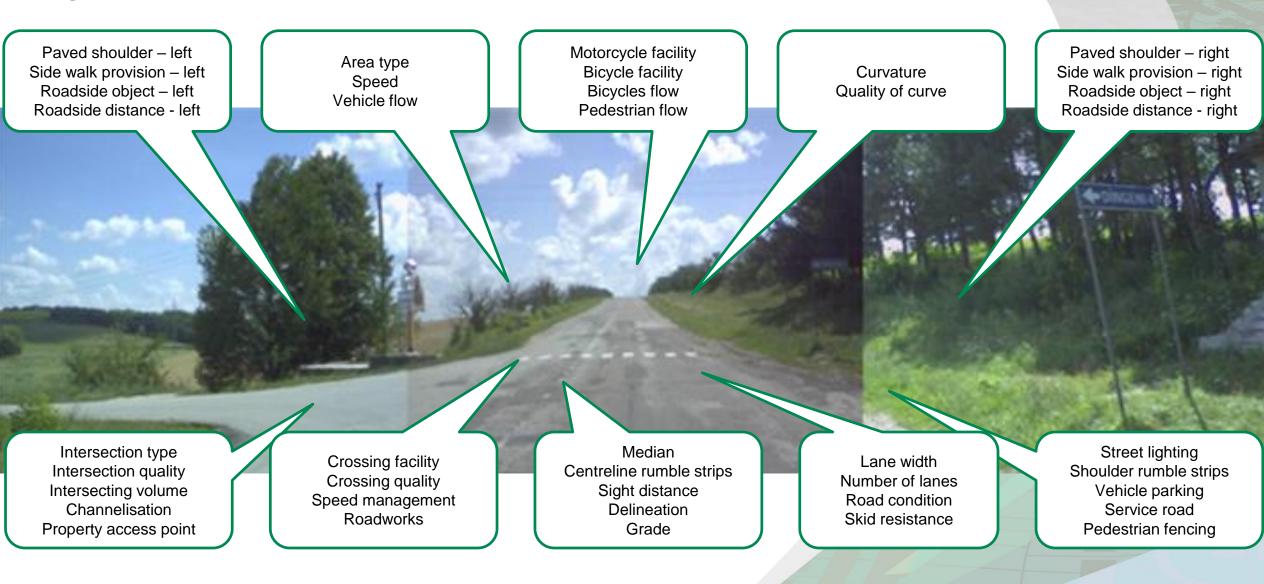
- The UN has adopted iRAPs international protocols within Targets 3 and 4 ensuring all new roads are built to a 3-star or better standard for all road users (Target 3), and more than 75% of travel is on the equivalent of 3-star or better roads for all road users by 2030 (Target 4).
- RAP metrics are recommended for use by the United Nations
 (as RAP metrics is a UN Target 3 and 4), World Health
 Organisation, and FIA Foundation and other leading institutions.
- They are applied in projects by the World Bank and regional development banks worldwide including the European Investment Bank and EBRD in Europe.
- Every year the inclusion of RAP metrics are reported in the 2018 WHO Global Road Safety Status Report.

Product Innovation

vation/

Model Innovation





aiRAP Star Rating Process

Physical Road Attributes

Signing/lining important in the AV transition

ROAD SIGNS	Germany (D)	Great Britain (GB)	Greece (GR)	Netherlands (NL)	Poland (PL)	Serbia (SRB)	
Slippery road				<u>A</u>			
Steep hill downwards (or upwards)	102	10 2	No.		8%		
Falling or fallen rocks	Only for extraordinary situations			In under plate description for danger type			

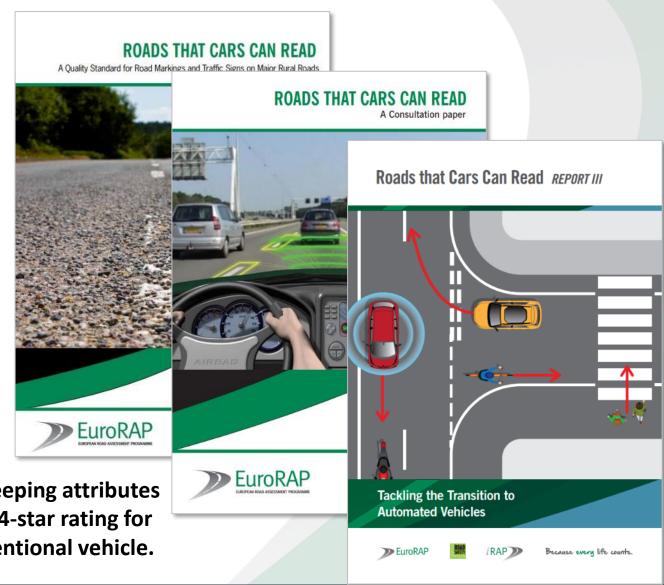
2015 – **4,869** crossings, 14 countries in south-east Europe – **2,151 (44%)** described as **poor quality- SENSOR Interreg project**

Crash patterns and infrastructure needed

Crash partners	Potential changes in risk	Examples of infrastructure needed Signing and lining; median barriers Priority intersections or roundabouts or signals – which will be best for AVs?		
AV vs conventional vehicle	Head-on – better lane-keeping Intersection – presence detection and road positioning enhanced; increased connectivity Shunt – distance-keeping and early autonomous emergency braking improved Lower likelihood of crash severity from speed control and speed limit compliance but may increase conventional vehicles striking autonomous cars			
AV vs AV	Similar to above but with risk reduced due to AV increased control and connectivity – eg shunt crashes eliminated	Signing and lining; connectivity with roadside infrastructure and with vehicles		
AV vs infrastructure	AV – better lane-keeping, speed adjustment on curve, barriers required but less often (speed reduction, reduced threat from roadside hazards), V-2-I connectivity with roadside and traffic information	Signing and lining – verge measures such as a revision of roadside crash restraint policy (ie provision of barriers). Connectivity		
AV vs motorcycle	Similar to AVs versus conventional vehicle but also dependent on ability of AV to detect motorcycle and of rider to interpret manoeuvres of car and <i>vice versa</i>	Signing and lining, median barriers; which is best for road-users: priority vs roundabouts vs signals? Motorcycle recognition by other vehicles and infrastructure		
AV vs bicycle	Similar to AV versus conventional vehicle but also dependent on ability of AV to detect bicycle and of rider to interpret manoeuvres of car and <i>vice versa</i>	Signing and lining; median barriers, nearside segregation, priority vs roundabouts vs signals; bicycle recognition as above		
AV vs pedestrian	Ability of AV to detect pedestrian and of pedestrian to interpret manoeuvres of car and vice versa	Pedestrian recognition as above; nearside segregation; crossing designs and priority		

Maintenance of infrastructure will be a key factor in the AV transition phase and maintenance will become a road authority higher-priority obligation.

Roads that Cars Can read-Recommendations


Understanding of:

- Behavioural interactions of conventional and autonomous vehicles
- Conflicts and near-miss involving autonomous vehicles
- Effectiveness of crash countermeasures
- Assessment of changes in crash patterns

To do:

- Provide consistent signing and lining
- Keep existing crash countermeasures for conventional vehicles during the transition
- Continue to save lives with adding existing countermeasures

The high -quality line marking coupled with the lanekeeping attributes of the vehicle may mean that it would contribute to a 4-star rating for an AV. That same road may only rate 2-star for a conventional vehicle.

CAV Readiness for the physical Infrastructure

- Connected and Autonomous Vehicle line readability will be assessed across 500 km of CORE-Ten roads in each of the four selected countries, those being Croatia, Greece, Italy and Spain (i.e. 2000 km in total).
- MoMa data consists of mobile LiDAR which has been captured at approximately 150 points/m2 using a Velodyne 32E scanner and 360degree imagery that has been captured at approximately 7 m intervals along the road system using a Ladybug 5 camera.
- Anditi will generate maps of sign locations for each road segment and compare this with the CAV readable sign maps generated from MN-R net. Locations where signs are detected in the mobile LiDAR but not in TomTom's MN-R sign data set is an indication of a sign that has not been detected by TomTom sign detection process. This is an indication that the sign may not be CAV readable (i.e. not able to be detected from imagery).
- Where signs are detected in mobile LIDAR and not the imagery, Anditi
 will analyse the 360 degree imagery for that location firstly to determine
 that a sign exists at this location and secondly that it is a sign that
 should be CAV readable. The likely reason for the sign not being
 detected (i.e. covered by vegetation or damaged) will also be recorded.

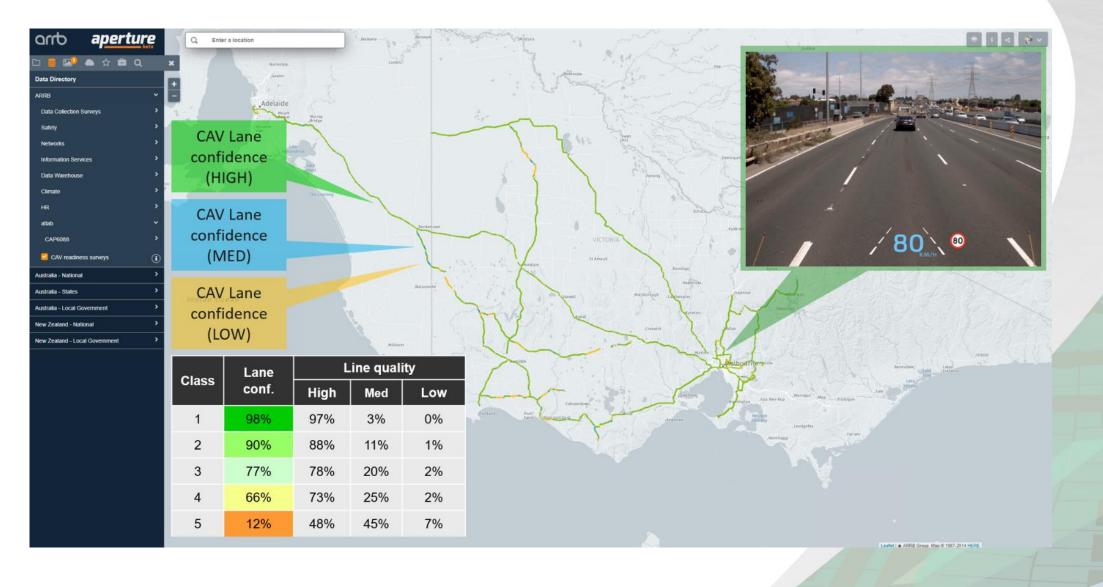
Table I List of MN-R sign information extracted from MoMa 360-degree imagery

Sign Type	Sign Type		
Children	Icy conditions		
Cross Wind	Left lane ends		
Cyclist	Movable bridge sign		
Dangerous Curve	Overtaking lane		
End of all restrictions	Pedestrian crossing at grade		
End of overtaking restriction	Pedestrian crossing		
End of Speed restriction	Pedestrian overpass		
Fog Area	Pedestrian underpass		
Guarded Railway Crossing	Right lane ends		
lcy conditions	Sharp curve left		
Left lane ends	Sharp curve right		
Movable bridge sign	Slippery road		
Children	Speed		
Cross Wind	Stop		
Cyclist	Traffic light ahead		
Dangerous Curve	Unguarded railway crossing		
End of all restrictions	Variable traffic		
End of overtaking restriction	Wildlife crossing		
End of Speed restriction	Winding road starting left		
Fog Area	Winding road starting right		
Guarded Railway Crossing	Yield sign		

Key findings from Austroads technical

- Lines
- Road signs
- Digital infrastructure
- Real-time operation

General findings


- Used EuroRAP Roads that Cars can read standards
- Freeways and highways typically (but not always) have edge lines and lines of good quality more than 90% of the time.
- Cellular availability on these roads is also typically high, at least on roads with higher traffic volumes.
- Mobileye proved to be most effective method

Infrastructure Changes to Support Automated Vehicles on Rural and Metropolitan Highways and Freeways Road Audit (Module 2)

CAV Road Classification- Australia

Lina Konstantinopoulou

Secretary General, EuroRAP

Lina.konstantinopoulou@eurorap.org

